SERIES ICV

Inline Check Valves

GENERANT

1/8" - 3/4" NPT Vacuum - 800 Psig

Description of Inline Check Valves

A compact, inline, direct acting poppet check valve suitable for pressure and vacuum applications. Bubble tight sealing is achieved by a line of contact between a precision machined seat and a standard elastomer O'ring with minimum differential pressure, regardless of mounting attitude. Floating poppet and fluted retainer design provides laminar flow. Metal to metal positive stop ensures long service life.

Technical Data of Inline Check Valves

Nominal Crack Pressures: .15, 1 & 3 Psig (0.01, 0.07 & 0.21 bar)

Proof Pressure: 1200 Psig (83 bar)

Operating Pressure Range: Vacuum - 800 Psig (55 bar)

Leakage: Zero @ > 0.5 Psig Back

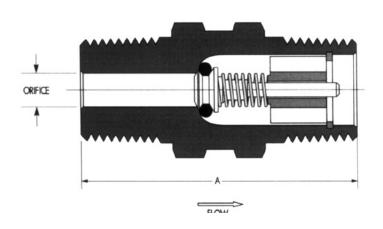
Pressure (0.03 bar) Temperature Rating:

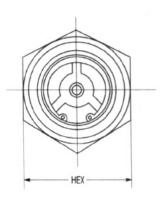
-80 F to 375 F (-62°C to 190°C)

based on seal material

Materials of Construction

	Valve Body Material					
Component	Brass	Stainless Steel ¹				
Body, Poppet	Brass, ASTM B16	316 SS, ASTM A479				
Spring Retainer	Brass, ASTM B16 ²	316 SS, ASTM A479				
Spring	302 SS, ASTM A313					
O'Ring Seal ³	Buna-N	Viton™				
Retaining Ring	Zinc Plated Carbon Steel	Stainless Steel				

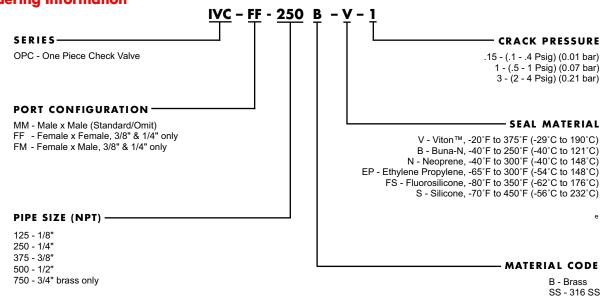

¹ Stainless available in 1/4", 3/8" & 1/2" Male x Male only


^{2 1/8&}quot; & 1/4" Brass valves have 316SS retainer

³ Lubricated with Krytox™ GPL-202

SERIES ICV INLINE CHECK VALVES

19B


Dimensional/Flow Data

Pipe Size (NPT)	Port Configuration		A	Hex	Orifice	Cv	Flow at Max Psid
	Inlet	Outlet	(inches)		(inches)		(SCFM)
1/8"	Male	Male	1.312	1/2"	.140	0.4	7.2
	Female	Female	1.687				
	Female	Male	1.437				
1/4"	Male	Male	1.592	5/8" 3/4"	.193	0.8	14.3
	Female	Female	1.937				
	Female	Male	1.500				
3/8"	Male	Male	1.610	3/4"	.270	1.2	21.5
1/2"	Male	Male	2.140	7/8"	.327	2.0	35.5
3/4"	Male	Male	2.160	1 - 1/16"	.467	5.0	90.0

¹ Maximum allowable pressure drop 15Psid.

Flow tested in accordance with ISA S75.21 with air. Restrictions in the inlet or outlet piping may reduce flow.

Ordering Information

NPT threads per ANSI/ASME B1.20.1

Viton, Krytox - ™DuPont

OPTIONS

Oxygen cleaning, stainless steel retaining ring (on brass valves), thread coatings, alternative seals and other thread configurations, consult factory

PROPER COMPONENT SELECTION - When specifying a component, the total system design must be considered to ensure safe and trouble-free performance. Intended component function, materials compatibility, pressure ratings, installation, environment and maintenance are the responsibility of the system designer.